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I.) Can't correctly model tokamak drift wave phenomena or obtain
edge and core fluid equations from Braginskii: recall   

€ 

p
r 
V ⊥~ r q ⊥

Realized by Mikhailovskii and Tyspin first, but they made errors
II.) Hazeltine drift kinetics missing the perpendicular portions of
gyroviscosity as well as the perpendicular viscosity
Can't use to directly evaluate Neoclassical radial electric field
III.) Gyrokinetics
IV.) Summary & Comments: need hybrid fluid-kinetic codes 

LOGO



I. What's Missing From Braginskii?
MHD vs. Drift Ordering (Short Mean Free Path)
MHD Ordering: seldom appropriate for tokamaks

Mean ion flow velocity =   

€ 

r 
V ~ vi = ion thermal speed

so   

€ 

p
r 
V >>

r q  = ion heat flux (with p = ion pressure)
Braginskii: Zh. Exp. Teor. Fiz. 33, 459 (1957) [Sov. Phys. JETP 6,

358 (1958)]& Reviews of Plasma Physics, V.1, p.205 (1965)
Robinson and Bernstein: Ann. Phys. 18, 110 (1962)
But typically pV ~ q:

  

€ 

r 
V ≈ (c /B)

r 
b ×∇Φ+ (c /enB)

r 
b ×∇p +

r 
V ||

  

€ 

r q ≈ (5cp/2eB)
r 
b ×∇T− (125p/32Mν)

r 
b ⋅∇T

Note: Braginskii assumes all components of   

€ 

r 
V ~ vi



MHD vs. Drift Ordering (Short Mean Free Path)
Drift Ordering: tokamak ordering
Mikhailovskii: Sov. Phys. JETP 25, 623 (1967)
Mikhailovskii and Tsypin: Plasma Phys. 13, 785 (1971) and Beitr.

Plasmaphys. 24, 335 (1984)

  

€ 

p
r 
V ~ r q  = ion heat flux (with p = ion pressure)

M&T recovered all of Braginskii plus new terms in viscosity,
  

€ 

t 
π = M d3∫ vf(r v r v −

t 
I v2/ 3) =

t 
π ||+

t 
π g+

t 
π ⊥, associated with heat flux

For example, in gyroviscosity   

€ 

p∇
r 
V → p∇

r 
V + (2 /5)∇r q 

Also, M&T did not consider electrons



BUT Need to Correct Mikhailovskii and Tsypin
M&T  use a truncated polynomial expansion for the ion
distribution function = f and a moment approach.
1) They neglect terms in the ion viscosity due to the full non-linear
form of the collision operator: their parallel,   

€ 

t 
π ||, and perpendicular,

  

€ 

t 
π ⊥, ion viscosities are missing 

€ 

q||2 and 

€ 

q⊥2  terms (their gyro-
viscosity   

€ 

t 
π g is ok to lowest order)

2) They truncate the polynomial expansion of the gyrophase
dependent part of f too soon: their perpendicular ion viscosity is
incorrect (  

€ 

t 
π g ok to lowest order) - need full gyrophase dependence

3) Their gyroviscosity is missing the collisional heat flow: the   

€ 

r q  in
  

€ 

p∇
r 
V → p∇

r 
V + (5 /2)∇r q  should include the collisional heat flux as

well as the diamagnetic and parallel
Details: Catto & Simakov, PoP 11, 90 (2004) & 12, 114503 (2006)



C&S Drift Ordering Expansion Parameters
Solve for f to obtain the viscosity by expanding in:

€ 

δ = ρ/L⊥<< 1 and     

€ 

Δ = λ/L|| << 1

where 

€ 

ρ = ion gyroradius, 

€ 

λ = mean free path, 

€ 

L⊥ =
perpendicular scale length, & 

€ 

L|| = parallel scale length

We allow 

€ 

L⊥<< L|| as well as 

€ 

L⊥ ˜ < L||  to permit

€ 

δ ~ Δ
The 

€ 

δ ~ Δ ordering allows   

€ 

r q ⊥~ r q || and retains all turbulent and
neoclassical effects in tokamaks - more general than Pfirsch-
Schlüter ordering 

€ 

δ << Δ
If 

€ 

∇T = 0, then rigid rotating ion Maxwellian is the solution - all
complications are due to 

€ 

∇T



Example: Gyroviscosity
The species gyroviscosity is of the form

  

€ 

t 
π g =

p
4Ω

r 
b × (t α +

t 
α T) ⋅ (

t 
I + 3

r 
b 
r 
b )− (

t 
I + 3

r 
b 
r 
b ) ⋅ (t α +

t 
α T)×

r 
b [ ]

with
Braginskii:   

€ 

t 
α =∇

r 
V 

Mikhailovskii & Tsypin:   

€ 

t 
α =∇

r 
V + (2 /5p)∇(r q || +

r q dia )
Catto & Simakov:   

€ 

t 
α =∇

r 
V + (2 /5p)∇(r q || +

r q dia +
r q coll)

Expressions are also available for
ion   

€ 

t 
π ||: a bit simpler than   

€ 

t 
π g

electron   

€ 

t 
π ||: slightly messier than the ion expression

ion   

€ 

t 
π ⊥: really messy, but neoclassics only requires   

€ 

∇
r 
V  terms

(Braginskii good enough for   

€ 

t 
π ⊥ in a tokamak as   

€ 

t 
π g is 

€ 

q2 larger)

Aside: need all of   

€ 

t 
π ⊥ unless have drift departures from surfaces



Parallel Ion Viscosity:

  

€ 

t 
π ||=

0.32
ν

(
t 
I − 3

r 
b 
r 
b ) :[(p∇

r 
V + 2

5∇
r q )+ 0.25(∇r q − r q ∇ lnp + 4

15∇
r q ||)](3

r 
b 
r 
b −

t 
I )

  

€ 

+
M

3pT
[0.41q||

2 − 0.06q2 ](3
r 
b 
r 
b −

t 
I )

Perpendicular Ion Viscosity:      

€ 

t 
π ⊥=

t 
π ⊥1+

t 
π ⊥2

  

€ 

t 
π ⊥1= −

3ν
10Ω2 [

t 
W + 3r n r n ⋅

t 
W + 3

t 
W ⋅ r n r n + (1/2)(

r 
I −15r n r n )(r n ⋅

t 
W ⋅ r n )

  

€ 

−(1/2)(
r 
I − r n r n )(

t 
W :

t 
I )]

  

€ 

t 
π ⊥2= −

9Mν
200pTΩ

[(r q + 31
15

r q || )(
r n × r q )+ (r n × r q )(r q + 31

15
r q || )]

  

€ 

t 
W ≡ p∇

r 
V + 2

5
∇

r q − 3
10p

(p∇r q − r q ∇p)− 1
100p

(3p∇r q ||+ 5r q ||∇p)

  

€ 

−
1

400T
(90r q −13r q || )∇T + Transpose



Heat Flow Implies Momentum Transport
Viscosity associated with heat flow leads to flows 

€ 

⇒V(r, t) ≠ 0

€ 

∂V
∂t

=
1
r
∂
∂r
rχ ∂
∂r
V+
2q
5p

 

 
 

 

 
 

 

 
 

 

 
      and    

€ 

V(r, t = 0) = 0

• Assume fewer hot ions carry heat in the positive direction on A
than cold negative flowing ions: no net particle flow but a
positive directed heat flow

• Collisional colds radially random walk faster than the few hots:
resulting in a negative particle flow on B - a radial toroidal
angular momentum flux has occurred

• Transient push off a wall imparts positive plasma spin



Collisional Moment Equations and Closure
The conservation of number, momentum and energy equations
plus the Maxwell equations are to be solved
The most straightforward procedure is the one used in MHD:
1) total momentum 

€ 

⇒   

€ 

r 
V 

2) electron momentum 

€ 

⇒   

€ 

r 
E 

3) Faraday's law 

€ 

⇒   

€ 

r 
B  (  

€ 

∇⋅
r 
B = 0 automatic)

4) Ampere's law 

€ 

⇒   

€ 

r 
J  (  

€ 

∇⋅
r 
J = 0 automatic, no need for vorticity)

Vorticity equations in reduced two fluid descriptions derived by
making approximations unable to recover neoclassical radial   

€ 

r 
E 

Collisional moment equations retain turbulence & neoclassical:
a)   

€ 

r q || &   

€ 

t 
π || evaluated to lowest order in 

€ 

Δ ~ δ &  

€ 

δ2, respectively
b) diamagnetic & collisional parts of   

€ 

r q ⊥ of order 

€ 

δ & 

€ 

νδ/Ω
c)   

€ 

t 
π g is of order 

€ 

δ2 and   

€ 

t 
π ⊥ is of order 

€ 

νδ2/Ω



Self-Consistent Closure: Multiple Length Scales (

€ 

δ ~ Δ)
1) perpendicular momentum: flows diamagnetic 

€ 

⇒   

€ 

r 
V ⊥~ δvi

2) continuity:   

€ 

∂n /∂t ~∇⊥⋅ (n
r 
V ⊥) 

€ 

⇒ 

€ 

ω ~ δ2Ω
3) parallel momentum: 

€ 

Mn∂V||/∂t ~ ∇||p  

€ 

⇒ 

€ 

V||/vi ~ vi/ωL|| ~ L⊥/δL||
4)   

€ 

r 
V ⊥~ V|| 

€ 

⇒ 

€ 

L⊥/L|| ~ δ2
note:   

€ 

Mn∂V||/∂t ~
r 
b ⋅ (∇⋅ t π g) ~ pδ2/L⊥, but   

€ 

r 
b ⋅ (∇⋅ t π ||) ~ pδ2/L||

5) check: energy balance:   

€ 

n∂T/∂t ~ ∇⊥⋅
r q dia 

€ 

⇒ 

€ 

ωp ~ pδvi/L⊥
Next order corrections: 

€ 

L⊥/L|| ~ δ2~ ν /Ω
1) continuity:   

€ 

∇||⋅ (n
r 
V ) /∇⊥⋅ (n

r 
V ) ~ δ2

2) perpendicular momentum:   

€ 

t 
π || +

t 
π g ~ δ2p

3) parallel momentum:   

€ 

r 
b ⋅ (∇⋅ t π ||) /∇||p ~ δ2 ~

r 
b ⋅ (∇⋅ t π ⊥) /∇||p ~ ν /Ω

4) energy balance: viscous heating is a 

€ 

δ2 correction &
  

€ 

∇||⋅
r q || /∇⊥⋅

r q dia ~ L⊥/L|| ~ δ2 ~ ∇⊥⋅
r q coll /∇⊥⋅

r q dia ~ ν /Ω
Also: Pfirsch-Schlüter closure for 

€ 

δ << Δ & 

€ 

L⊥~ L||
and   

€ 

V|| ~ vi >>
r 
V ⊥~ r q /p and 

€ 

L⊥/L|| ~ δ~ ν /Ω



Pfirsch-Schlüter Radial Electric Field: (

€ 

δ << Δ & 

€ 

L⊥~ L||)
Knowing viscosity can evaluate radial electric field from toroidal
angular momentum conservation:   

€ 

〈R2∇ζ⋅ t π ⋅∇ψ〉 = 0    for
  

€ 

r 
B = I∇ζ+∇ζ×∇ψ with 

€ 

ζ  the toroidal angle variable
[details Catto & Simakov, PoP 12, 012501 (2005)]
Why doesn't   

€ 

r 
E  agree with Hazeltine drift kinetic PS result?

[Hazeltine PF 17, 961 (1974)] - instead,   

€ 

r 
E  agrees with large aspect

ratio result of Claassen & Gerhauser, Czech. J. Phys. 49, 69 (1999)
1) Must use   

€ 

r 
B ⋅ (∇p + en∇Φ) = 0  not 

€ 

∇p = 0 =∇Φ

2) Hazeltine drift kinetic equation [Hazeltine Plasma Phys. 15, 77
(1973)] missing parallel parts of gyroviscosity: direct evaluation
gives   

€ 

p∇
r 
V || + (5 /2)∇r q ||  instead of   

€ 

p∇
r 
V + (5 /2)∇r q  - need more than

just 
  

€ 

〈R2∇ζ⋅
t 
π ⋅∇ψ〉→ MR2∇ζ⋅ d3v˜ f Hr v r v ∫ ⋅∇ψ



II. What's Missing From Drift Kinetics?
Hazeltine derives the drift kinetic equation by writing 

€ 

f = f + ˜ f ,
with  

€ 

f = (2π)−1 dϕf = 〈f〉ϕ∫    and  

€ 

˜ f = f − f   and using 

€ 

ε=v2/2 & 

€ 

µ

He keeps 

€ 

f  to all orders, but in 

€ 

˜ f  he keeps only order 

€ 

δ terms and
assumes 

€ 

B−1∂f/∂µ ~ ∂f/∂ε, where 

€ 

δ =ρ /L⊥
In tokamaks, f is isotropic (Maxwellian) to lowest order so that
  

€ 

r 
J ×

r 
B = c∇p and 

€ 

B−1∂f/∂µ ~ δ∂f/∂ε

Therefore, Hazeltine's 

€ 

˜ f  contains some, but not all, order 

€ 

δ2 terms

To get all 

€ 

δ2 order terms in 

€ 

˜ f  need to solve

€ 

˜ f =Ω−1 dϕ(
ϕ
∫ ˙ f +Ω∂f/∂ϕ − 〈˙ f 〉ϕ)   by inserting 

€ 

˜ f  to order 

€ 

δ on right

where   

€ 

˙ f = ∂f/∂t +
r v ⋅ ∇f +

r a ⋅ ∇vf = −Ω∂f/∂ϕ+ ...



Check: Old + New Terms Give Full Gyroviscosity
Denote Hazeltine 

€ 

˜ f  by 

€ 

˜ f H and rest of 

€ 

˜ f  by 

€ 

˜ f N, then 

€ 

˜ f = ˜ f H+ ˜ f N
to order 

€ 

δ2, giving an arbitrary collisionality gyroviscosity that
reduces to the correct collisional expression for   

€ 

t 
π g = M d3∫ v˜ f r v r v 

In the collisional limit, find for a direct evaluation

  

€ 

t 
π g =

p
4Ω

r 
b × (t α +

t 
α T) ⋅ (

t 
I + 3

r 
b 
r 
b )− (

t 
I + 3

r 
b 
r 
b ) ⋅ (t α +

t 
α T)×

r 
b [ ] + inertial

with   

€ 

t 
α =

t 
α H+

t 
α N [see Simakov & Catto, PoP 12, 012105 (2005)]

Hazeltine terms only:   

€ 

t 
α H=∇

r 
V || + (2 /5p)∇r q ||

New S&C terms:   

€ 

t 
α N =∇

r 
V ⊥ + (2 /5p)∇r q ⊥

Inertial: due to the difference between   

€ 

r v    and   

€ 

r w =r v −
r 
V  moments

and 

€ 

exp(−Mv2/2T) and 

€ 

exp(−Mw2/2T)
A moment evaluation of   

€ 

t 
π g only requires lowest order 

€ 

˜ f H



Gyrophase Dependent Part of Distribution Function

In the Hazeltine 

€ 

˜ f , 

€ 

˜ f H, the 

€ 

∂f /∂µ terms are order 

€ 

δ2

  

€ 

˜ f H=
r v ⋅[Ω−1

r 
b ×∇µ f − r v E∂f /∂ε− (r v E+

r v M )B−1∂f /∂µ]

  

€ 

−[(r v ⊥
r v ×

r 
b + r v ×

r 
b r v ⊥ ) :∇

r 
b ](v|| /4ΩB)∂f /∂µ]

The following order 

€ 

δ2 terms in 

€ 

∇µ f  and 

€ 

∂f /∂ε are missing

  

€ 

˜ f N=Ω−1[(r v || +
1
4
r v ⊥ )r v ×

r 
b + r v ×

r 
b (r v || +

1
4
r v ⊥ )] :

r 
h 

where   

€ 

t 
h =∇r g ⊥+ (e

r 
E /M)∂r g ⊥/∂ε and   

€ 

r g ⊥=Ω−1
r 
b ×∇f 0 −

r v E∂f 0/∂ε

€ 

˜ f = ˜ f H+ ˜ f N is needed to directly evaluate the perpendicular viscosity
[see Simakov & Catto PoP 12, 012105 (2005)]



Full Drift Kinetic Equation (to order 

€ 

δ2)
The full drift kinetic equation with 

€ 

˜ f  to order 

€ 

δ2 is given by

€ 

〈˙ f 〉ϕ = 〈˙ f 〉ϕ + 〈˜ ˙ f H 〉ϕ + 〈˜ ˙ f N 〉ϕ
with the Hazeltine drift kinetic equation given by

  

€ 

〈˙ f 〉ϕ+ 〈˜ ˙ f H 〉ϕ=
∂f 
∂t

+[(v||+vp )
r 
b +r v d ] ⋅ ∇µ f + e

r 
E 

M
⋅[(v||+vp )

r 
b +r v d ]+µ

∂B
∂t

 
 
 

 
 
 
∂f 
∂ε

+ ˙ µ gc
∂f 
∂µ

and the (somewhat awkward) new term by

  

€ 

〈˜ ˙ f N 〉ϕ = v||
r v d+vp

r 
b + 5µB

4Ω
r 
κ ×

r 
b  

 
 

 
 
 +

r v d+vp
r 
b + 5µB

4Ω
r 
κ ×

r 
b  

 
 

 
 
 v||

 

  
 

  
:
t 
h 

  

€ 

+
v||µB
4Ω

[
r 
b ×∇

r 
b + (

r 
b ×∇

r 
b )T−∇

r 
b ×

r 
b − (∇

r 
b ×

r 
b )T ] :

t 
h 

  

€ 

+µB(r v ||
r v E+

r v E
r v ||) :∂

t 
h /∂ε−−v||µB

Ω

r 
b ⋅∇× (

t 
h ⋅

r 
b +

r 
b ⋅

t 
h )

with   

€ 

t 
h =∇r g ⊥+ (e

r 
E /M)∂r g ⊥/∂ε and   

€ 

r g ⊥=Ω−1
r 
b ×∇f 0 −

r v E∂f 0/∂ε



Lowest Order Drift Kinetic Equation (to order 

€ 

δ)
The lowest order drift kinetic equation is

  

€ 

∂f 
∂t

+[(v||+vp )
r 
b +r v d ] ⋅ ∇µ f + e

r 
E 

M
⋅[(v||+vp )

r 
b +r v d ]+µ

∂B
∂t

 
 
 

 
 
 
∂f 
∂ε

= 〈C〉ϕ

which can be written in a conservative form
Hybrid lowest order drift kinetic - fluid closure plus 

€ 

˜ f = ˜ f H+ ˜ f N:
1) Evaluate   

€ 

r q || directly from 

€ 

f  and all (diamagnetic + collisional)
  

€ 

r q ⊥ from the   

€ 

Mv2r v /2 moment of the full kinetic equation for f
2) Evaluate   

€ 

t 
π || directly from 

€ 

f  and   

€ 

t 
π g &   

€ 

t 
π ⊥ from the   

€ 

Mr v r v  moment
of the full kinetic equation for f (

€ 

˜ f H+ ˜ f N is needed to evaluate   

€ 

t 
π ⊥)

Retains turbulence, zonal flows, and neoclassical (& classical)
a)   

€ 

r q || and   

€ 

t 
π || are only evaluated to lowest order in 

€ 

(p||− p⊥) /p
b) diamagnetic and collisional parts of   

€ 

r q ⊥ are order 

€ 

δ and 

€ 

νδ/Ω
c)   

€ 

t 
π g is of order 

€ 

pV||/ΩL⊥ and   

€ 

t 
π ⊥ is of order 

€ 

pνV||/Ω2L⊥
If 

€ 

(p||− p⊥) /p ~ δ2 closure proceeds as for collisional limit



Stronger Anisotropy, Low Collisional Ordering: 

€ 

(p||− p⊥) /p ~ δ
1) perpendicular momentum: flows diamagnetic 

€ 

⇒   

€ 

r 
V ⊥~ δvi

2) continuity:   

€ 

∂n /∂t ~∇⊥⋅ (n
r 
V ⊥) 

€ 

⇒ 

€ 

ω ~ δ2Ω
3) parallel momentum: 

€ 

Mn∂V||/∂t ~ ∇||p  

€ 

⇒ 

€ 

V||/vi ~ vi/ωL|| ~ L⊥/δL||
4) 

€ 

δ ~ V⊥/vi <<V||/vi ~ L⊥/δL|| <<1 

€ 

⇒ 

€ 

δ2 << L⊥/L|| << δ
note:   

€ 

Mn∂V||/∂t ~
r 
b ⋅ (∇⋅ t π g) ~ ∇||p >>   

€ 

r 
b ⋅ (∇⋅ t π ||) ~ pδ/L||

5) check: energy balance:   

€ 

n∂T/∂t ~ ∇⊥⋅
r q dia 

€ 

⇒ 

€ 

ωp ~ pδvi/L⊥
Next order corrections: 

€ 

λ ~ L|| & 

€ 

δ~ (L⊥/L|| )2 /3~ (ν /Ω)2 /5
1) continuity: assume   

€ 

∇||⋅ (n
r 
V || ) /∇⊥⋅ (n

r 
V ⊥ ) ~ (L⊥/δL|| )2 ~ δ 

€ 

⇒

€ 

(L⊥/L|| )2 ~ δ3

€ 

⇒ 

€ 

V||/vi ~ δ1/2
2) viscosities:   

€ 

t 
π || ~ δp,   

€ 

t 
π g ~ δ3/2p &   

€ 

t 
π ⊥~ νδ3/2p/Ω

3) parallel momentum:   

€ 

r 
b ⋅ (∇⋅ t π ||) /∇||p ~ δ and assume

  

€ 

r 
b ⋅ (∇⋅ t π ⊥) /∇||p ~ (ν /Ω)(V||L|| /ΩL⊥

2 ) ~ ν /Ω ~ δL⊥/L||
4) energy balance: assume 

€ 

q|| ~ pV|| so viscous heating 

€ 

π||V|| / q|| ~ δ
  

€ 

∇||⋅
r q || /∇⊥⋅

r q dia ~ (L⊥/δL|| )2 ~ δ  and   

€ 

∇⊥⋅
r q coll /∇⊥⋅

r q dia ~ ν /Ω



Reminder: Lowest Order Maxwellian
Requires either
a) Collisional plasma - scrape off layer

€ 

C{f0} = 0 or 

€ 

f0 Maxwellian
b) Magnetic surfaces (or closed field lines) - inside separatrix

lowest order   

€ 

v||
r 
b ⋅ ∇f0 = C{f0} for 

€ 

λ ~ L||, then annihilate
streaming to find   

€ 

dθC{f0} /v||∫
r 
b ⋅∇θ = 0 

€ 

⇒ 

€ 

f0 Maxwellian
Pressure anisotropy is weak 

€ 

(p||− p⊥) /p << 1
Lowest order pressure balance is just   

€ 

r 
J ×

r 
B = c∇p



III. Gyrokinetics
Versions implemented in core codes retain all 

€ 

k⊥ρ ~ 1 effects,
where 

€ 

k⊥ is the perpendicular wavenumber of the turbulence, but
normally retain only order 

€ 

δ corrections in f from   

€ 

r 
R = r r +Ω−1r v ×

r 
b :

like lowest order drift kinetics with 

€ 

k⊥ρ ~ 1
Cannot evolve the neoclassical radial electric field, which like
zonal flows, results in an axisymmetric global flow
Inverse energy cascade in tokamaks: turbulence gives rise to zonal
flows, that will alter the neoclassical flow and evolve on the
transport time scale
Sheared and coupled zonal and neoclassical global flows can alter
the saturation level on transport time scales
Need a moment approach similar to drift kinetics but with 

€ 

k⊥ρ ~ 1



Rigidly Rotating Maxwellian: 

€ 

∇T= 0

  

€ 

fM = n(M/2πT)3/2 exp[−(M/2T)(r v −ωR2∇ζ)2 ]
Use 

€ 

E = v2/2+ (eΦ/M)  &    

€ 

ψ∗ = ψ− (Mc/e)R2∇ζ⋅
r v ,  then

€ 

fM = n0(M/2πT)3/2 exp[−(ME/T)− (eωψ∗/cT)]
with

€ 

n0 ≡ nexp[(eΦ /T)+ (eωψ/cT)− (Mω2R2/2T)] = constant
so that momentum conservation is satisfied

  

€ 

Mnω2R2∇ζ⋅∇(R2∇ζ)+ en[∇Φ− (ω / c)R2∇ζ×
r 
B ]+ T∇n = 0

Rigidly rotating ion Maxwellian satisfies ion-ion collision operator
and Vlasov operator if 

€ 

∇T= 0 and 

€ 

∂Φ/∂t = 0 (recall 

€ 

Cie small)



IV. Summary
Braginskii usually not appropriate in tokamaks since perpendicular
flows are weak
Hazeltine drift kinetics has to be used with care as does
gyrokinetics - normally need to use moments equations
Need to develop hybrid kinetic-fluid descriptions:
*For fluid codes to handle long mean free path effects
*For gyrokinetic codes to handle transport time scales
Question: Is there any fluid or kinetic code correctly retaining
neoclassics and turbulence? - need both!


